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Abstract

This paper presents a depth estimation method that leverages rich representations
learned from cascaded convolutional and fully connected neural networks operating on a
patch-pooled set of feature maps. Our method is very fast and it substantially improves
depth accuracy over the state-of-the-art alternatives, and from this, we computationally
reconstruct an all-focus image and achieve synthetic re-focusing, all from a single im-
age. Our experiments on benchmark datasets such as Make3D and NYU-v2 demonstrate
superior performance in comparison to other available depth estimation methods by re-
ducing the root-mean-squared error by 57% & 46%, and blur removal methods by 0.36
dB & 0.72 dB in PSNR, respectively. This improvement is also demonstrated by the
superior performance using real defocus images.

1 Introduction
Recovering original image from its defocus version has attracted much attention and recently
numerous techniques have been put forward. Due to the inherent information loss, this re-
construction task requires strong prior knowledge or multiple observations to produce effec-
tive results. For example, deconvolution with natural image priors [5, 8, 15, 20, 35], hybrid
cameras [22, 30, 40] and blurred/noisy image pairs [46] are among the notable solutions.

Reclaiming depth from 2D images is analogous to estimating the third physical dimen-
sion lost during the imaging process. For this purpose, several existing approaches incorpo-
rate additional information to regularize this inherently ill-posed inverse problem. Here, we
briefly discuss common techniques for depth estimation and their capacity for generating a
clean image when the input image is defocused.

Levin et al. [18] proposed first technique to recover depth from a single image. An
aperture mask was designed based on a prior derived from the probability distribution of the
gradients of natural gray-scale images. Veeraraghavan et al. [41] proposed a coded aperture
technique optimizing the aperture patterns based on the shape of power spectra. Moerno-
Noguer et al. [27] projected a dotted pattern over the scene.These single-shot coded aperture
approaches do not explicitly take into account of image structure and noise [47]. Some may
require manual intervention to generate reliable depth maps [18]. Most importantly, spectral
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Input image Original depth Our depth prediction
Figure 1: Example of depth prediction using our proposed model on NYU-v2 [29].

distortion introduced by the aperture mask hinders the ability to remove blur since spatial
frequencies are systematically attenuated in the captured image [16, 48].

As an alternative to single-shot coded aperture techniques, some methods apply a focus
measure for individual pixels across multiple images taken at different focal lengths [32].
The depth map is computed by assigning each pixel the position in the focal stack for which
the focus measure of that pixel is maximal. This means the depth resolution is directly
proportional to the number of images available. To augment the resolution, filters are applied
to focus measure [26, 36] or smooth surfaces are fitted to the estimated depths [39]. Depth-
from-defocus with a single image is also targeted by numerous methods [1, 2, 3, 23, 24, 28,
49] that used focus measures and filters.

Many algorithms utilized multiple images [31, 42, 45] for recovering depth of a scene.
In [42], the authors used texture invariant rational operators to predict a precise dense depth
map. However, accurate customization of those filters is an open question. Xu et al. [45]
uses two blur observations of the same scene to estimate depth and remove the blur. Li et
al. [21] measured shading in a scene to refine depth from defocus, iteratively.

Success of deep neural networks in image classification [14, 37], segmentation [25], and
recognition [33], inspired single image depth estimation [23]. Recent works of [38], [11], [7]
and [23] are relevant to our method. [38] and [11] use a single sharp image to estimate depth
map. However, both of these works focus on 3D reconstruction of already known segmented
objects. More recently, Liu et al. [23] and Eigen et al. [7] proposed CNN based approaches
for depth estimation. Our algorithm differs from both of these works; Liu et al. [23] learns
the unary and pairwise potentials from sharp images while Eigen et al. [7] use CNN as a
black box to estimate depth map using sharp images. Furthermore, we employ out-of-focus
images and apply different blur measures to steer our CNN.

Recent deblurring works have imposed constraints on the sparsity of image gradients e.g.
Levin et al. [20] used the hyper-Laplacian prior, cho & Lee applied the L2 prior, Krishnan et
al. [13] employed the L1/L2 prior. Sinilarly, Xu et al. [44] introduced two stage optimization
with dominant edges in the image, whereas, Whyte et al. [43] used auxiliary variables in
Richardson-Lucy deblurring algorithm. Our deblurring method incorporates pixelwise depth
map to deblur the images.

In this paper, we aim for depth estimation and blur removal by leveraging on rich rep-
resentations learned from cascaded convolutional and fully connected neural networks oper-
ating on patch pooled feature maps. Current techniques estimate depth from sharp images
by relying on manually tuned statistical models. Their depth accuracy is limited due to the
variance in the visual world, and usually, human intervention is required. In contrast, our
method benefits from the correspondence between the blurred image and depth map. Learn-
ing the filters to capture these inherent associations through a deep network acts as a prior for
estimating better depth.We also exploit the depth of field to sharpen the out-of-focus image.
To the best of our knowledge, predicting depth from a single out-of-focus image using deep
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Figure 2: An illustration of the overall method. The sharp image is defocused using circular
kernels which simulates capture with a regular aperture. This out-of-focus image is passed to
the network A (shown in red) to compute fully convolutional feature map. A patch pooling
extract respective feature map at keypoint locations in the image, which are then propagated
through network B (shown in green) to estimate the depth. Lastly, kernels are computed
from the depth map, which are applied to blurred image, that results in an all-focus image.

neural networks has not been investigated before.
Contributions: We claim the following contributions in this paper. 1) Predicting depth from
a single out-of-focus image using deep neural networks by exploiting dense overlapping
patches, 2) Aligning depth discontinuities between the patches of interest using bilateral
filtering, and 3) Incorporating depth map to estimate per pixel blur kernels for non uniform
image deblurring.

2 Depth and Deblur Estimation
To estimate depth, we introduce a learning procedure using a modified deep neural net-
work [37] by incorporating image level global context and local evidence. The global con-
text is captured using a fully convolutional network and the local evidence is absorbed using
a fully connected network through patch pooling. In the following section, we discuss indi-
vidual components of our system in more detail.

2.1 Our Network Architecture
The architecture of our network is inspired by VGG 16-layer very deep network [37]. The
input to our proposed network at both training and testing stage is a fixed-size RGB image.
The only preprocessing we apply is mean-normalization, i.e. subtracting the mean RGB
value from each pixel (computed separately for Make3D [34] and the NYU-v2 [29] train-
ing dataset). The image is passed through a stack of convolutional layers each consist of
traditional 3×3 receptive field filters. In contrast to the [37], we didn’t utilize 1×1 convo-
lution filters, which can be seen as a linear transformation of the input channels (followed by
non-linearity). The convolution stride is fixed to one pixel and the spatial padding of convo-
lutional layer is such that the spatial resolution is preserved after convolution, i.e. padding
one pixel for 3× 3 convolutional layers. Spatial pooling is carried out by five max-pooling
layers, which is followed by some of the convolutional layers. Max-pooling is performed
over a 2× 2 pixel window, with a stride of two. Convolutional layers are followed by the
patch pooling layer, which takes RGB image as input and generates a dense grid of patches
over the entire image. It also pools the feature map for each corresponding patch and returns
a fixed size output. Patch pooling layer is followed by three Fully-Connected (FC) layers;
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the first two have 4096 channels each while the third performs 21-way depth estimation and
thus contains 21 channels (one for each sampled depth class). The final loss layer is the
softmax layer.

This objective function essentially minimizes the multinomial logistic loss and it maps
the output scores of last fully-connected layer to a probability distribution over classes using
the softmax function.

p̂i = exp(yi)/

[
C

∑
c=1

exp(yic)

]
(1)

The computed multinomial logistic loss is then computed for the softmax output class
probabilities as

E =
−1
N

N

∑
i=1

log(p̂i,Li). (2)

where Li is the quantized depth label for each pixel in the image.

2.2 Depth Prediction
Our network is a cascade of two smaller networks as shown in Fig. 2. The convolutional
deep network A (shown in red) is designed specifically to enforce the global image level in-
formation in depth estimation. It is followed by a shallow fully connected network B (shown
in green) that processes small local evidence for further refinement.

Unlike typical networks, here images are neither cropped nor warped to prevent them
from unintended blur artifacts. The network A operates on full scale out of focus images and
comprises of 13 convolutional and four max-pooling layers. The output of the network A is
a pixel-level feature map and we argue, this is essential in modeling depth dynamic range.
Futhermore, each layer of data is a four-dimensional array of size N×C×H ×W , where
N is the number of images in a batch, H is the height of image, W is the width of image
and C is the feature (or channel) dimension. The first layer receives the N number of out
of focus images Y and in the subsequent layers, input location correspond to the receptive
field regions in the image. The convolution, pooling, and activation functions are the basic
components and since these operators are translation invariant, they apply to local input
regions and depend only on relative spatial positions. In any n-th layer, the feature value fi j
for the data vector yi j at location (i, j) is computed by

f (n)i j = Ψks( f (n−1)
(i+δ i, j+δ j),0 < δi,δ j < k) (3)

where k denotes the kernel size of the layer, s is subsampling (by a factor of four in both
spatial axes) and Ψks is the layer type.
Patch-pooling: Pixel depth prediction requires multiple deconvolutional layers to access
an original size image feature map and a pixel-level regression to obtain a full scale depth
map. In practice, pixel-level regression with deep and large network architectures require a
comparably large number of iterations for convergence in back-propagation, which makes
the training memory intensive and slow. To overcome this issue, we introduce a small set
of keypoint locations on a regular grid to perform patch pooling. This novel patch pooling
layer uses max-pooling to convert the computed network response inside a region of interest
into a feature map with a fixed spatial extent of H ×W (e.g., 64× 64), where H and W
are layer hyper-parameters that are independent of any particular patch. A patch Φ is a
rectangular window into the convolutional feature map. A tuple (r,c,h,w) defines each patch
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and specifies its top-left corner (r,c) and its height and width (h,w). The spatial pyramid-
pooling [10] layer is carried out on the output of the network A feature map. For a pyramid
level with n×m keypoints, the patch Φi j corresponding to (i, j)-th keypoint is denoted by

Φi j = [b i−1
n

wc,d i
n

we] x [b j−1
m

hc,d j
m

he]. (4)

Intuitively, on the left and top boundary, the floor operation is performed while on the right
and bottom boundary, the ceiling. These patches are densely extracted from the entire image
and hence, overlap. We extract the respective feature map region for each image patch corre-
sponding to a keypoint. In the backward direction [9], the function computes the gradient of
the loss function (i.e. softmax loss) with respect to each of its input data vector yi j at location
(i, j) in n-th layer by following the argmax switches as

∂L
∂yn

i j
= ∑

Φ

∑
k
[i j = i j∗(Φi j,k)]

∂L
∂yn+1

i j
. (5)

Each mini-batch contains multiple patches (i.e. Φ = [Φ00, . . . ,Φnm]) with the corresponding
patch-pooling output yn+1

i j . The input data pixel yn
i j is a part of several patches, thus (possibly)

assigned many different labels k. The partial derivative ∂L/∂yn+1
i j is accumulated if i j is the

argmax switch selected for yn+1
i j by max pooling. In back-propagation, the partial derivatives

∂L/∂yn+1
i j are already computed by the backward functions of the next layer (i.e. the network

B) on top of our patch-pooling layer.
The network B operates on the sampled feature map, which is defined as 64×64 spatial

neighborhood for each sampled keypoint in the image. This network is shallow and consists
of only fully connected layers. It is designed specifically to predict one depth value for
each keypoint in the image. Network A, patch-pooling and network B are trained jointly as
outlined in Sections 2.4 and 2.5.

2.3 Depth Estimation with Fast Bilateral Filtering
The depth map Z̃ predicted by the network B is not continuous, however, the spatial dimen-
sions of Z̃ and out of focus image Y are same but Z̃ has regions with missing values. In order
to estimate the missing pixels in Z̃, we interpolate using nearby keypoints.

Furthermore, our intuition is that the color intensity discontinuities must be aligned with
the depth discontinuities between the patches of interest. The predicted depth values at the
nearby keypoint locations are used to interpolate the depth for each pixel of out of focus
image. Using a fast bilateral filtering with Y , the smoothness constraint on the boundary
pixels and the edge alignment constraint on the image pixels can be simultaneously satisfied.
Inpainting of depth map is an ill-posed problem, therefore, an additional prior on the struc-
ture is required. The filtered depth map Z is a combination of Z̃ (data term) and Y bilateral
features (smoothness term) which is inspired by [17].

2.4 Training
We adopt a pragmatic two step training scheme to learn shared features via alternating opti-
mization. We first train network A based on back-propagation to learn weights. Then, fixing
the weights for the network A, we train network B. In addition, we jointly fine-tune both
networks, once network A and B are fully trained individually. The training is carried out by
mini-batch gradient descent to optimize the softmax objective.
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Make3D
Depth

Error (C1) (lower is better) Error (C2) (lower is better)
rel log10 rms rel log10 rms

Saxena et al. [34] - - - 0.370 - -
Depth-Transfer (DT) [12] 1.744 0.407 7.089 1.820 0.415 7.787

DCNF [23] 1.644 0.397 6.725 1.698 0.403 7.310
Depth from Defocus (DFD) [4] 0.733 - 4.446 1.000 - 5.149

Ours 0.213 0.075 2.560 0.202 0.312 0.079

Table 1: Comparison for depth estimation on Make3D [34] dataset. Our method achieves
the best in all error evaluation metrics using the training/test partition provided with [34] .

In all the experimental settings, the batch size is a single image and its keypoint loca-
tions. The number of keypoints are set to 15K patches for NYU-v2 and 7K for Make3D
dataset. The learning rate is initially set to 10−2 and then decreased by a factor of ten after
15K iterations. In total, we train our system only for 25K iterations (five epochs), hence
decreasing the learning rate only once.

As any gradient-descent framework, the initialization of the network weights is impor-
tant. Improper initialization can stall the convergence due to the numerical instability of
gradients in deep networks. To address this issue, we use the pretrained object recognition
network weights for initialization of our network. We train the networks for depth prediction
using a 21-bin strategy as described in Section 2.3.

2.5 Testing
After jointly fine-tuning both networks A and B, we follow the standard test procedure.
Given a color input image of size H×W ×C, we extract patches corresponding to all key-
point locations in the image, forward-propagate them through the network A and compute
the full image feature map. Subsequently, we perform patch-pooling to extract the features
for each corresponding region and forward-propagate them to the network B. The output of
the network B along with the input image is post-processed using the fast bilateral filtering
to estimate the full resolution continuous valued responses for each pixel in the input image.

2.6 Deblurring and Refocusing
After computing the depth map for the out of focus image, we construct a sharp image that
is in-focus at all pixels. For this purpose, each pixel of the image is deconvolved using the
kernels for every pixel in the depth map. These kernels are directly set from the estimated
depth values. Since the deconvolution is done for each pixel, there are no visible artifacts
generated near depth discontinuities.

This pixel based deconvolution approach is more effective in comparison to [4, 45] where
regions near depth discontinuities exhibit ringing artifacts. We use a modified version of
non-blind deblurring by [18]

E(xi j) = ‖xi j ∗ kd
i j− yi j‖2 + τ‖∇xi j‖0.8. (6)

where xi j is the in-focus image pixel, yi j is the out of focus image pixel and kd
i j is the

kernel at location (i, j). For each pixel in image Y , we first compute the kernel kd
i j from the

depth map Z at i j-th pixel position. Next, each pixel of the sharp image X is obtained by
deconvolving a patch of 25× 25 centered around the same pixel of Y with kd

i j using eq 6.
This technique ensures that the deconvolved pixel will not be affected by ringing artifacts.
The sharp image X is generated by aggregating all deconvolved pixels xi j into their original
positions. Although this process of deblurring patches is more accurate but computationally
expensive.
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NYU-v2 DFD [4] Saxena [34] (DT) [12] Eigen [7] DCNF [23] Ours
rel 0.609 0.349 0.350 0.215 0.213 0.094

log10 - - 0.131 - 0.087 0.039
rms 2.758 1.214 1.200 0.907 0.759 0.347

Table 2: Quantitative comparison of our depth algorithm on NYU-v2 [29] dataset with cur-
rent state-of-the-art alternatives. Our method achieves the best in all error evaluation metrics.
Note that the results of Saxena et al. [34] and Depth-Transfer [12] are reproduced from [7].

Deblurring Peak Signal to Noise Ratio (PSNR) (Higher is better)
Whyte [43] Cho & Lee [5] Xu [44] Krishnan [13] Levin [20] Ours

Make3D 19.95 20.46 20.71 20.29 20.67 21.07
NYU-v2 28.23 31.72 31.82 33.49 33.02 34.21

Table 3: Quantitative comparison of our deblurring method on Make3D [34] and NYU-
v2 [29] datasets with state of the art deblurring methods.

3 Experimental Analysis and Discussion
In this section, we present both qualitative and quantitative evaluations and comparisons
against state-of-the-art methods such as Make3D [34], DepthTransfer [12], DFD [4], and
DCNF-FCSP [23]. Similarly for deblurring, we compare with Whyte et al. [43], Cho &
Lee [6], Krishnan et al. [13]. Levin et al. [19], and Xu et al. [44].

We use average relative error (rel), root-mean-square error (rms) and average log10 error
for depth estimation and Peak-Signal-to-Noise Ratio (PSNR) for blur removal. Depth esti-
mation experiments were performed using the Caffe framework for efficient inference at the
test time. This platform also allows sharing features during training as well. In step-wise
training, stochastic gradient descent mini-batches are sampled randomly from N images.
Nevertheless, we use all patches for the sampled images in the current mini-batch. Over-
lapping patches from the same image share computation and memory in the forward and
backward passes. Training is done on a standard desktop with an NVIDIA Tesla K40c GPU
with 12GB memory.

3.1 Preparing Synthetic Images
Synthetic out of focus images with spatially varying blur kernels were generated by using the
corresponding ground truth depth maps. For this purpose, we selected two image datasets
having ground truth depth maps for as described in section 3.2. The depth variation is de-
pendent on the collection methods and type of sensors used, e.g. Make3D [34] dataset has a
depth variation of 1-80 meters with more than two depth layers. Subsequently, the gaussian
blur kernel is generated from each depth layer and applied to the corresponding sharp image.

3.2 Datasets
We performed experimental validation on two datasets: NYU-v2 [29] and Make3D [34]. For
depth estimation, we use the standard test images provided with these datasets, while for blur
removal we use randomly selected subset of images from each dataset.
NYU-v2: This dataset consists of 1449 color and depth images of indoor scenes. The dataset
is split into 795 images for training and 654 images for the test. All images are resized to
420×640 and white borders are removed.
Make3D: This dataset consists of 534 color and depth images of outdoor scenes. It is split
into 400 images for training and 134 images for the test. All images are resized to 460×345.
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Original Defocused Groundtruth DFD [4] DT [12] DCNF [23] Ours

Figure 3: Qualitative comparison of depth estimation on [34] dataset. Our method correctly
predicted the depth levels. Red color represents far while blue represents near.

3.3 Depth Estimation
Table 1 shows the results for Make3D dataset. Our proposed method outperforms for all
metrics as well as both C1 and C2 errors. In terms of root mean square (rms) our method is
leading by a margin of 1.87 (C1 error) and 5.07 (C2 error) from the second best performer.

In [23], the superpixel pooling method extracts useful regions from the convolutional
feature maps instead of image crops. However, their superpixel strategy does not take into
account the overlapping regions. Besides this, the number of superpixels per image are small
and vary in size. In contrast, the patches we select are very dense and have overlapping areas,
which helps to predict pixel-wise depth across different patches more accurately. We observe
that the keypoint locations and dense patches on a regular grid are more beneficial than non-
overlapping superpixel segments. The method in [4] is specifically trained for estimating
depth from out of focus images, therefore it outperforms other alternatives that use sharp
images only.

The results for NYU-v2 dataset are shown in Table 2. In terms of rms error our method
is 0.412 higher than the best performing method among the alternatives with similar obser-
vations for log10 and rel. Since the current state-of-the-art methods fail to exploit out of
focus images (except [4]), we reproduced their original results for the NYU-v2 dataset. In
contrast, our method takes out of focus images to estimate depths and still able to outperform
all competing methods by a significant margin. Some qualitative results are shown in Fig. 3.
The proposed method has captured the depth accurately for the near as well as far objects in
the scene.

3.4 Removing Non-uniform Blur
In this section, we evaluate our blur removal method on test images from NYU-v2 and
Make3D. The proposed deblurring method outperforms all competing methods on all test
images for non-uniform blur. Figures 4 show the results generated by our and competing
methods for different images. Our algorithm delivers higher visual quality than its coun-
terparts. Furthermore, our algorithm is able to restore high frequency texture details with a
closer resemblance to the groundtruth than existing methods due to estimating blur kernels
from depth layers. In Fig. 4, the highly textured patterns on walls are adeptly reproduced by
our algorithm, while these details are clearly missing in the results of the other methods. In
this example, most of the other methods tend to smoothen out the variation of the background
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Original Defocus- Predicted [43] [5] [44] [20] [13] Ours
ed Image depth 28.85 dB 28.42 dB 27.43 dB 29.66 dB 29.51 dB 30.27 dB

Figure 4: An example from Make3D [34] dataset. Our deblurring method has recovered
more details without producing ringing artifacts. Best viewed at higher magnification.

Real Image DFD [4] Eigen et al. [7] DCFN [23] Ours

Figure 5: Real defocused image with unknown blur. Our method benefits from the amount
of blur in the real images whereas other methods rely on the color and shape of the object
which fails to recover the depth.

texture along one of its principal directions.In addition, some methods introduce additional
artifacts and artificial textures.

In Table 3, we report the blur removal accuracy of our algorithm, measured by PSNR
across all the test images, with the highest PSNR in each comparison is highlighted in bold.
The average improvement (in PSNR) by our non-uniform deblurring algorithm over the
state-of-the-art methods for NYU-v2 is at least 0.72 dB, and for Make3D is at least 0.36
dB on test images as shown in Table 3. This significant improvement demonstrates the ad-
vantage of incorporating a deep neural network based depth map for kernel estimation in
blur removal.

4 Real Out-of-focus Images
In this experiment, we evaluate the proposed method on a real-world blurred image. Com-
parisons with state-of-the-art methods [12, 23, 34] are shown in figure 5. In the bird example,
the objects close to the camera are in focus while the background is out of focus which is
reflected in our results, while other baseline methods fail to capture the relationship between
depth and blur and hence, do not perform well in this scenario. As compared to others,
our method outperformed, however, our proposed algorithm do not estimate depth on real
images as accurately as synthetic images.

5 Conclusion
We have presented a framework that estimates depth map which is utilized to deblur out of
focus images. The patch-pooling strategy aims to extract feature map at densely selected
keypoint locations which is effective and efficient for depth estimation. The key difference
from existing methods is the formulation of the CNN based depth estimation from defocus
and incorporating the resulting depth map in deblurring. We have extensively validated our
method on benchmark datasets. Our method benefits from out of focus blur, but, it will not
be able to estimate depth in presence of camera-shake. Our future work will focus on fixed
budget depth estimation from motion blur/camera-shake and joint estimation of depth map
and deblur image.
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