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Abstract In this paper, we tackle depth estimation

and blur removal from a single out-of-focus image. Pre-

viously, depth is being estimated, and blurred is re-

moved using multiple images; for example, from multi-

view or stereo scenes, but doing so with a single image

is challenging. Earlier works of monocular images for

depth estimated and deblurring either exploited geo-

metric characteristics or priors using hand-crafted fea-

tures. Lately, there is enough evidence that deep convo-

lutional neural networks (CNN) significantly improved

numerous vision applications; hence, in this article, we

present a depth estimation method that leverages rich

representations learned from cascaded convolutional and

fully connected neural networks operating on a patch-

pooled set of feature maps. Furthermore, from this depth,

we computationally reconstruct an all-focus image i.e.
removing the blur and achieve synthetic re-focusing, all

from a single image.

Our method is fast, and it substantially improves

depth accuracy over the state-of-the-art alternatives.

Our proposed depth estimation approach can be uti-

lized for everyday scenes without any geometric priors

or extra information. Furthermore, our experiments on

two benchmark datasets consist images of indoor and

outdoor scenes i.e. Make3D and NYU-v2 demonstrate

superior performance in comparison to other available

depth estimation state-of-the-art methods by reducing

the root-mean-squared error by 57% and 46%, and

state-of-the-art blur removal methods by 0.36 dB and
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0.72 dB in PSNR, respectively. This improvement in-

depth estimation and deblurring is further demonstrated

by the superior performance using real defocus images

against images captured with a prototype lens.
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1 Introduction

Recovering depth from a single image has many appli-

cations in computer vision and image processing. Many

algorithms in computer vision or image processing take

advantage of depth information, for example, pose esti-

mation [1] and semantic labeling [2] etc. Recently, Mi-
crosoft introduced an affordable RGBD camera called

Kinect for capturing the indoor depth along with RGB

images; however, the computer vision community still

uses available RGB datasets for evaluation for the dif-

ferent applications. Similarly, for outdoor applications,

mostly LiDAR is used, but because of infrared interfer-

ence, the acquire depth is noisy. This has commenced

extensive research attention on the problem of estimat-

ing depths from single RGB images. Furthermore, it is

an ill-posed problem, as an acquired image scene may

signify many real-world scenarios.

Similarly, removing blur from an image has attained

much focus due to easy access to hand-held camera

equipment. Deblurring has applications in object recog-

nition [3], classification [4], and image segmentation [5]

etc. Therefore, recovering original image from its defo-

cus version has attracted much attention, and recently

numerous techniques have been put forward. Due to the

inherent information loss, this reconstruction task re-

quires strong prior knowledge or multiple observations
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Input image Original depth Our depth

Fig. 1 Example of depth prediction using our proposed
model on NYU-v2 [15].

to produce effective results. For example, deconvolution

with natural image priors [6–10], hybrid cameras [11–

13] and blurred/noisy image pairs [14] are among the

notable solutions.

In this article, our focus is on removing blur and

estimating depth from a single image. Currently, the

methods that rely on depth-from-defocus using coded-

aperture have augmented the capacity to retrieve depth

from a single image computationally. Subsequently, the

recovered depth can be employed to generate a sharp

image that further provides the possibilities to create

synthetic views, change image focus, and enlarge the

field’s depth. The fundamental concept is to embed

a coded pattern into a regular camera’s aperture to

achieve blur due to defocus. This causes the image to

have different distinctive spatial structure.

The currently available depth from defocus meth-

ods relies on statistical models, encoding the sharp im-

age structure as both the depth and radiance are not

known, hence making the problem is ill-posed. Due to

significant variance in the visual world, the depth re-

covery is very much ineffectual. User intervention is

required to predict accurate and reliable depth maps

though coded-aperture techniques have improved the

depth discrimination. The coded-aperture techniques

come with its inherent problem, such as the quality

of the deblurred image is diminished due to less light

transmitted. Similarly, the blur induced by coded-aperture

is difficult to invert. Such problems have motivated re-

searchers to look into more unconventional methods to

recover the depth from defocus and deblur the out-of-

focus image using the retrieved depth.

This exposition is an extension of our preliminary

work [16] and introduces an alternative to the conven-

tional aperture design and depth estimation methods

for a single image. Reclaiming depth from the 2D im-

ages is analogous to estimating the third physical di-

mension lost during the imaging process. For this pur-

pose, several existing approaches incorporate additional

information to regularize this inherently ill-posed in-

verse problem. On the contrary, we propose a novel

convolutional neural network-based depth estimation

method without injecting any additional information.

Only synthetically generated out-of-focus images are

used as input to the network. This model learns the ev-

idence using a quadratic energy minimization function

using the difference between the synthetic images and

the ground truth. Furthermore, the learned evidence

i.e. the depth information is then incorporated in the

defocusing problem. This encourages to have a kernel

for each small neighborhood based on the intensity of

the depth map.

The organization of our paper is as follows. We re-

view related depth estimation and deblurring work in

the next section. In section 3, we present our network

architecture for depth estimation followed by our ap-

proach to incorporate the depth for deblurring in sec-

tion 4. We evaluate and compare against the state-of-

the-art depth estimation and deblurring techniques in

section 5. We finally conclude our paper in section 6

2 Related Work

Here, we briefly discuss common techniques for depth

estimation and deblurring algorithms with the capacity

for generating a clean image when the input image is

defocused.

2.1 Depth estimation

The techniques employed for extracting depth from an

RGB image is enormous, and reporting it in this expo-

sition is challenging; however, we provide a comprehen-

sive review of the most common state-of-the-art com-

petitive methods in this section of the paper.

2.1.1 Single-Shot coded aperture

Levin et al. [17] proposed the first technique to recover

depth from a single image. An aperture mask was de-

signed based on a prior derived from the probability

distribution of the gradients of natural gray-scale im-

ages. Veeraraghavan et al. [18] proposed a coded aper-

ture technique optimizing the aperture patterns based

on the shape of power spectra. Similarly, Noguer et al.

[19] projected a dotted pattern over the scene while the

Zhou et al. [20] method placed an optical diffuser in

front of the lens to obtain defocus images. These single-

shot coded aperture approaches do not explicitly take

into account of image structure and noise [21]. Some

may require manual intervention to generate reliable

depth maps [17]. Most importantly, spectral distortion

introduced by the aperture mask hinders the ability to

remove blur since spatial frequencies are systematically

attenuated in the captured image [22,23].
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2.1.2 Depth from focus

As an alternative to single-shot coded aperture tech-

niques, some methods apply a focus measure for indi-

vidual pixels across multiple images taken at different

focal lengths [24]. The depth map is computed by as-

signing each pixel the position in the focal stack for

which the focus measure of that pixel is maximal. This

means the depth resolution is directly proportional to

the number of images available. To augment the reso-

lution, filters are applied to focus measure [25,26], or

smooth surfaces are fitted to the estimated depths [27].

Depth-from-defocus with a single image is also targeted

by numerous methods [28–34] that used focus measures

and filters.

2.1.3 Depth from multiple images

Many algorithms utilized multiple images [35–37] for

recovering the depth of a scene. In [35], the authors

used texture invariant rational operators to predict a

precise dense depth map. However, accurate customiza-

tion of those filters is an open question. Xu et al. [37]

uses two blur observations of the same scene to estimate

the depth and remove the blur. Li et al. [38] measured

shading in a scene to refine depth from defocus, itera-

tively. Recently, Shahid et al. [39] employed the content-

adaptive blurring (CAB), a multi-focus image focus al-

gorithm to detect non-blurry regions in the image. The

CAB algorithm induces blur depending on the image’s

content and analyzes the neighborhood of the blur for

the image quality, whether blur should be applied or

not keeping the quality. Hence, non-uniform blur is in-

duced in the focused regions, while the already blurry

areas receive limited or no blur.

2.1.4 Convolutional neural networks (CNN) methods

Success of deep convolutional neural networks in image

classification [40,41], segmentation [5], object detection

[42,43] and recognition [44], inspired single image depth

estimation [34]. Recent works of Su et al. [45], Kar et al.

[46], Eigen et al. [47] and Fayao et al. [34] are relevant to

our method. [45] and [46] use a single sharp image to es-

timate depth map. However, both of these works focus

on 3D reconstruction of already known segmented ob-

jects. More recently, [34] and [47] proposed CNN based

approaches for depth estimation. Our algorithm differs

from both of these works; [34] learns the unary and

pairwise potentials from sharp images while [47] use

CNN as a black box to estimate depth map using sharp

images.

More recently, another multi-focused image fusion

method known as Deep Regression Pair Learning (DRPL) [48]

is proposed, which takes the whole image instead of

patches employing two source images generating two

binary masks. To improve performance, DRPL utilizes

gradient loss and SSIM loss. On the contrary, we employ

out-of-focus images and apply different blur measures

to steer our CNN.

2.2 Deblurring

Recent deblurring works have imposed constraints on

the sparsity of image gradients e.g. Levin et al. [10] used

the hyper-Laplacian prior, Cho [9] applied the `2 prior,

Krishnan et al. [49] employed the `1/`2 prior. Similarly,

Xu et al. [50] introduced two-stage optimization with

dominant edges in the image, whereas Whyte et al. [51]

used auxiliary variables in the Richardson-Lucy deblur-

ring algorithm. Our deblurring method incorporates a

pixel-wise depth map to deblur the images.

2.2.1 Edge priors

Single image deblurring approaches use edges extracted

implicitly or explicitly for kernel estimation. A few no-

table examples of deblurring approaches utilize image

edge information for computing the blur kernel. Many

deblurring methods ( e.g. [9] and [50]) rely on the de-

tection and selection of sharp edges through bilateral

filtering, shock filtering, and magnitude thresholding.

Similarly, for spatially varying kernels, step edges are

predicted by [52] from the blurred ones. Furthermore,

another method proposed by [53] used the detected

edges to calculate the Radon transform of the point-

spread functions (PSF). Recently, [54] proposed hyper-

laplacian prior. Similarly, [55] estimated the blur kernel

by using only non-saturated pixels. Here, the purpose

is to reduce the ringing artifacts in the latent image by

discarding the saturated pixels in the image during the

blur kernel estimation. Edge priors are also employed

in text image deblurring, Pan et al. [56] used `0 prior

to extract edges. This approach is beneficial when the

background is smooth; however, it fails to perform sat-

isfactorily in textured image regions. A problem with

edge priors is selecting wrong edges for the blur ker-

nel estimation and can happen most often as there are

multiple copies of the same edge because of the blur

kernel. Extracting the definite edge, in this case, would

be quite challenging. Finally, images with limited tex-

ture (e.g. faces and text) often do not augment from

methods using edge priors.
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2.2.2 Probabilistic priors

Another line of research adopted a probabilistic per-

spective modeling the posterior probability for the la-

tent image and the blur kernel. Fergus et al. [6] illus-

trated that modeling the distribution of gradient image

as a mixture of Gaussians while that of the blur kernel

as exponential distributions. Improving upon this, Shan

et al. [8] introduced a Maximum a Posteriori (MAP)

model assuming a Gaussian noise model, which leads

to having constraints on the image i.e. gradient spar-

sity and the blur kernel i.e. `1-norm regularization. On

the other hand, [10] proposed an iterative EM strategy

by maximizing the posterior distribution over all the

potential latent images with the best kernel in hand.

2.2.3 GMM priors

Another approach is to employ certain information from

the latent image patches instead of using the entire im-

age for deblurring e.g. [57–59]. The GMM model is used

by Zoran et al. [57] to learn an ample variety of patch

appearances prompting imprecise convergence of the so-

lution pair. Similarly, Sun et al. [58] exploited atomic

structures such as edges, corners, T-junctions etc. in

the prior learned from the natural and artificial im-

ages. Subsequently, et al. [59] employed the recurrence

property of natural images in multi-scale fashion for

estimating the blur kernel.

2.2.4 Learning methods

Recently, due to the availability of a significant amount

of training data, many researchers opted to pursue the

path of learning from the data (e.g. see [60] and [61]).

To determine the blur kernels, Schuler et al. [60], intro-

duced a convolution neural network composed of the

stack of the many CNN modules. This model is appli-

cable for specific kernel size, mainly below 17×17. Sim-

ilarly, Chakrabarti et al. [61] presented a CNN model

that learns the Fourier coefficients of the blur kernel,

which is then used as input to the non-blind deblurring

for recovering the original image. Although it improves

the qualitative results; however, it suffers when dense

textures exist in the image.

2.2.5 Class-Specific priors

Lately, many methods have incorporated the class in-

formation into the image deblurring [62,63]. An ap-

proach for photo enhancement by Joshi et al. [64] is

recently proposed, which uses personal photo albums.

One limitation of this method is the manual annotation

of the external faces to separate it from the background

for segmentation and matting. Subsequently, Hacohen

et al. [65] investigated class-specific prior, which needs

a dense similarity between the blurred image and the

sharp reference image. Although this method’s result

is appealing; however, its applicability is restricted due

to the firm requirement for the similar content refer-

ence image. In related work, Sun et al. [66] tackled

the non-blind deblurring problem by incorporating the

same content external example images into a prior to

transfer mid and high-frequencies to the blurred image.

Pan et al. [67] presented a deblurring method for face

images, where a similar external face image is selected

among the training set, then prominent features such

mouth, eyes, and lower contour are annotated manually,

which guides the deblurring process.

Our approach is different from all the mentioned im-

age deblurring algorithms. Our method does not require

any manual annotations or similarity between the train-

ing and blurred images. Furthermore, our approach does

not rely on external training images, rather the depth

map is estimated by our CNN network. We describe our

strategy for deblurring in detail in the next section.

2.3 Contributions

This paper aims for depth estimation and blur removal

by leveraging rich representations learned from cascaded

convolutional and fully connected neural networks op-

erating on patch pooled feature maps. Current tech-

niques estimate depth from sharp images by relying on

manually tuned statistical models. Their depth accu-

racy is limited due to the visual world’s variance, and

usually, human intervention is required. In contrast, our

method benefits from the correspondence between the

blurred image and the depth map. Learning the filters

to capture these inherent associations through a deep

network acts as a prior for estimating better depth.We

also exploit the depth of field to sharpen the out-of-

focus image. To the best of our knowledge, predicting

depth from a single out-of-focus image using deep neu-

ral networks has not been investigated before.

We claim the following contributions in this paper.

– Predicting depth from a single out-of-focus image

using deep neural networks by exploiting dense over-

lapping patches.

– Aligning depth discontinuities between the patches

of interest using bilateral filtering.

– Incorporating depth map to estimate per pixel blur

kernels for non-uniform image deblurring.
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Fig. 2 A representation of the overall method. The sharp image is defocused using circular kernels which simulates capture
with a regular aperture. This out-of-focus image is passed to the network A (shown in red) to compute fully convolutional
feature map. A patch pooling extract respective feature map at keypoint locations in the image, which are then propagated
through network B (shown in green) to estimate the depth. Lastly, kernels are computed from the depth map, which is applied
to the blurred image, that results in an all-focus image.

3 Depth Estimation

To estimate depth, we introduce a learning procedure

using a modified deep neural network [41] by incorpo-

rating image-level global context and local evidence.

The global context is captured using a fully convolu-

tional network, and the local evidence is absorbed using

a fully connected network through patch pooling. In the

following section, we discuss the individual components

of our system in more detail.

3.1 Network Architecture

The architecture of our network is inspired by the VGG

16-layer very deep network [41]. The input to our pro-

posed network at both the training and testing stage

is a fixed-size RGB image. The only preprocessing we

apply is mean-normalization, i.e. subtracting the mean

RGB value from each pixel (computed separately for

Make3D [68] and the NYU-v2 [15] training dataset).

Next, the image is passed through a stack of convo-

lutional layers, each consist of traditional 3 × 3 recep-

tive field filters. In contrast to the [41], we didn’t utilize

1 × 1 convolution filters, which can be seen as a linear

transformation of the input channels (followed by non-

linearity). A fixed convolution stride of one pixel and

the convolutional layer’s spatial padding is such that

the spatial resolution is preserved after convolution, i.e.

padding one pixel for 3×3 convolutional layers. Spatial

pooling is carried out by five max-pooling layers fol-

lowed by some of the convolutional layers. Max-pooling

is employed over a 2 × 2 pixel window, with a stride

of two. Convolutional layers are followed by the patch

pooling layer, which takes the RGB image as input and

generates a dense grid of patches over the entire im-

age. It also pools the feature map for each correspond-

ing patch and returns a fixed-size output. Three Fully-

Connected (FC) layers follow the patch pooling layer;

the first two have 4096 channels, while the third per-

forms 21-way1 depth estimation and thus contains 21

channels (one for each sampled depth class). The final

loss layer is the softmax layer.

This objective function inherently minimizes the multi-

nomial logistic loss, and it maps the output scores of the

last fully-connected layer to a probability distribution

over classes using the softmax function.

p̂i = exp(yi)/

[
C∑
c=1

exp(yic)

]
. (1)

The computed multinomial logistic loss is then com-

puted for the softmax output class probabilities as

E =
−1

N

N∑
i=1

log(p̂(i,Li)), (2)

where Li is the quantized depth label for each pixel in

the image.

3.2 Depth Prediction

Our network is a cascade of two smaller networks, as

shown in Fig. 2. The convolutional deep network A (shown

in red) is designed specifically to enforce the global

1 Taken from literature for fair comparison
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image-level information in depth estimation. It is fol-

lowed by a shallow, fully connected network B (shown

in green) that processes small local evidence for further

refinement.

Here, unlike typical networks, images are neither

cropped nor warped to prevent them from unintended

blur artifacts. The network A operates on the full-scale

out-of-focus images and comprises 13 convolutional and

four max-pooling layers. The output of the network A is

a pixel-level feature map, and we argue, this is essen-

tial in modeling depth dynamic range. Furthermore,

each layer of data is a four-dimensional array of size

N ×C×H×W . Where N is the number of images in a

batch, H is the height of the image, W is the width of

the image, and C is the feature (or channel) dimension.

The first layer receives the N number of out-of-focus

images Y , and in the subsequent layers, input location

corresponds to the receptive field regions in the image.

The convolution, pooling, and activation functions are

the basic components, and since these operators are

translation invariant, they apply to local input regions

and depend only on relative spatial positions. In any

n-th layer, the feature value fij for the data vector yij
at location (i, j) is computed by

f
(n)
ij = Ψks(f

(n−1)
(i+δi,j+δj), 0 < δi, δj < k), (3)

where k denotes the kernel size of the layer, s is sub-

sampling (by a factor of four in both spatial axes) and

Ψks is the layer type.

3.3 Patch-pooling

Pixel depth prediction requires multiple deconvolutional

layers to access an original size image feature map and a

pixel-level regression to obtain a full-scale depth map.

In practice, pixel-level regression with deep and large

network architectures require a comparably large num-

ber of iterations for convergence in back-propagation,

making the training memory intensive and slow. To

overcome this issue, we introduce a small set of key-

point locations on a regular grid to perform patch pool-

ing. This novel patch pooling layer uses max-pooling

to convert the computed network response inside a re-

gion of interest into a feature map with a fixed spa-

tial extent of H ×W (e.g., 64 × 64), where H and W

are layer hyper-parameters that are independent of any

particular patch. A patch Φ is a rectangular window

into the convolutional feature map. A tuple (r, c, h, w)

defines each patch and specifies its top-left corner (r, c)

and its height and width (h,w). The spatial pyramid-

pooling [69] layer is carried out on the output of the

network A feature map. For a pyramid level with n×m

keypoints, the patch Φij corresponding to (i, j)-th key-

point is denoted by

Φij = [b i− 1

n
wc, d i

n
we]x[bj − 1

m
hc, d j

m
he]. (4)

Intuitively, the floor operation is performed on the

left and top boundary while on the right and bottom

boundary, the ceiling. These patches are densely ex-

tracted from the entire image and hence, overlap. We

extract the respective feature map region for each im-

age patch corresponding to a keypoint. In the backward

direction [43], the function computes the gradient of the

loss function (i.e. softmax loss) with respect to each of

its input data vector yij at location (i, j) in n-th layer

by following the argmax switches as

∂L

∂ynij
=

∑
Φ

∑
k

[ij = ij∗(Φij , k)]
∂L

∂yn+1
ij

. (5)

Each mini-batch contains a number of patches i.e. Φ

= [Φ00, . . . , Φnm], with the corresponding patch-pooling

output yn+1
ij . The input data pixel ynij is a part of several

patches, thus (possibly) assigned many different labels

k. The partial derivative ∂L/∂yn+1
ij is accumulated if ij

is the argmax switch selected for yn+1
ij by max pooling.

In back-propagation, the partial derivatives ∂L/∂yn+1
ij

are already computed by the backward functions of the

next layer (i.e. the network B) on top of our patch-

pooling layer.

The network B operates on the sampled feature

map, which is defined as 64× 64 spatial neighborhood

for each sampled keypoint in the image. This network

is shallow and consists of only fully connected layers. It

is designed specifically to predict one depth value for

each keypoint in the image. Network A, patch-pooling
and network B are trained jointly as outlined in Sec-

tions 3.5 and 3.6.

3.4 Depth Estimation with Fast Bilateral Filtering

The depth map Z̃ predicted by the network B is not

continuous, however, the spatial dimensions of Z̃ and

out-of-focus image Y are the same, but Z̃ has regions

with missing values. To estimate the missing pixels in

Z̃, we interpolate using nearby keypoints.

Furthermore, our intuition is that the color intensity

discontinuities must be aligned with the depth discon-

tinuities between the patches of interest. The predicted

depth values at the nearby keypoint locations are used

to interpolate each pixel’s depth of out-of-focus image.

Using fast bilateral filtering with Y , the smoothness

constraint on the boundary pixels and the edge align-

ment constraint on the image pixels can be simultane-

ously satisfied. Inpainting of depth map is an ill-posed
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problem; therefore, an additional prior on the structure

is required. The filtered depth map Z is a combination

of Z̃ (data term) and Y bilateral features (smoothness

term), which is inspired by [70].

3.5 Training

We adopt a pragmatic two-step training scheme to learn

shared features via alternating optimization. We first

train network A based on back-propagation to learn

weights. Then, fixing the weights for the network A,

we train network B . Besides, we jointly fine-tune both

networks, once network A and B are fully trained in-

dividually. The training is carried out by mini-batch

gradient descent to optimize the softmax objective.

In all the experimental settings, the batch size is a

single image and its keypoint locations. The number of

keypoints is set to 15K patches for NYU-v2 and 7K for

the Make3D dataset. The learning rate is initially set

to 10−2 and then decreased by a factor of ten after 15K

iterations. In total, we train our system only for 25K it-

erations (five epochs), hence reducing the learning rate

only once.

As with any gradient-descent framework, the ini-

tialization of the network weights is crucial. Improper

initialization can stall the convergence due to the nu-

merical instability of gradients in deep networks. To

address this issue, we use the pre-trained object recog-

nition network weights to initialize our model. We train

the networks for depth prediction using a 21-bin strat-

egy, as described in Section 3.4.

3.6 Testing

After jointly fine-tuning both networks A and B , we

follow the standard test procedure. Given a color input

image of size H×W×C, we extract patches correspond-

ing to all keypoint locations in the image, forward-

propagate them through the network A and compute

the full image feature map. Subsequently, we perform

patch-pooling to extract the features for each corre-

sponding region and forward-propagate them to the

network B . The output of the network B along with the

input image is post-processed using the fast bilateral fil-

tering to estimate the full resolution continuous-valued

responses for each pixel in the input image.

4 Deblurring/Refocusing

After computing the depth map for the out-of-focus

image, we construct a sharp image in-focus at all pix-

els. For this purpose, each pixel of the image is decon-

volved using the kernels for every pixel in the depth

map. These kernels are directly set from the estimated

depth values. Since the deconvolution is done for each

pixel, there are no visible artifacts generated near depth

discontinuities.

This pixel-based deconvolution approach is more ef-

fective in comparison to [37,72] where regions near depth

discontinuities exhibit ringing artifacts. We use a mod-

ified version of non-blind deblurring by [17]

E(xij) = ‖xij ∗ kdij − yij‖2 + τ‖∇xij‖0.8, (6)

where xij is the in-focus image pixel, yij is the out-of-

focus image pixel and kdij is the kernel at location (i, j).

The first term of Eq 6 is called the data fidelity term

and minimizes the difference between the ground-truth

image and the blurry image. This aim is to keep the

deblur image faithful to the original image. The second

term of Eq 6 is called regularization or a prior due to

the equation’s ill-posedness. An effective prior such as

the one based on gradient sparsity helps avoid the triv-

ial solutions and guides the process to the meaningful

outcome.

For each pixel in image Y , we first compute the

kernel kdij from the depth map Z at ij-th pixel position.

Next, each pixel of the sharp image X is obtained by

deconvolving a patch of 25 × 25 centered around the

same pixel of Y with kdij using eq 6. This technique

ensures that the deconvolved pixel will not be affected

by ringing artifacts. The sharp image X is generated by

aggregating all deconvolved pixels xij into their original

positions. Although this process of deblurring patches

is more accurate but computationally expensive.

5 Experimental Analysis and Discussion

In this section, we present both qualitative and quan-

titative evaluations and comparisons against state-of-

the-art methods such as Make3D [68], DepthTransfer

[71], DFD [72], and DCNF-FCSP [34]. Similarly for de-

blurring, we compare with [51], [9], [49]. [73], and [50].

We use average relative error (rel), root-mean-square

error (rms), and average log10 error for depth estima-

tion and Peak-Signal-to-Noise Ratio (PSNR) for blur

removal. Depth estimation experiments were performed

using the Caffe framework for efficient inference at the

test time. This platform also allows sharing features

during training. In step-wise training, stochastic gradi-

ent descent mini-batches are sampled randomly from N

images. Nevertheless, we use all patches for the sampled

images in the current mini-batch—overlapping patches

from the same image share computation and memory in

the forward and backward passes. Training is done on
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Table 1 Network configuration for our depth estimation, using dense patch pooling, is based on VGG16 [41]. For brevity, we
use conv for convolutional layer, relu for activation function, ip for inner product and interp for bilinear upsampling.

Layer 1-2 3-4 5-7 8-10 11-13 14-15 16
Type conv+relu conv+relu conv+relu conv+relu conv+relu ip+relu ip+interp

Filter Size 3×3 3×3 3×3 3×3 3×3 - -
No. of Filter 64 128 256 512 512 4k 20

Pooling max max max max patch - -

Table 2 Comparison for depth estimation on Make3D [68] dataset. Our method achieves the best in all error evaluation
metrics using the training/test partition provided by [68].

Make3D
Depth

Error (C1) (lower is better) Error (C2) (lower is better)
rel log10 rms rel log10 rms

Saxena[68] - - - 0.370 - -
DT[71] 1.744 0.407 7.089 1.820 0.415 7.787

DCNF [34] 1.644 0.397 6.725 1.698 0.403 7.310
DFD [72] 0.733 - 4.446 1.000 - 5.149

Ours 0.213 0.075 2.560 0.202 0.312 0.079

Table 3 Quantitative comparison of our depth algorithm on NYU-v2 [15] dataset with the current state-of-the-art alternatives.
Our method achieves the best in all error evaluation metrics. Note that the results of [68] and Depth-Transfer [71] are reproduced
from [47].

NYU-v2 [72] [68] [71] [47] [34] Ours
rel 0.609 0.349 0.350 0.215 0.213 0.094

log10 - - 0.131 - 0.087 0.039
rms 2.758 1.214 1.200 0.907 0.759 0.347

a standard desktop with an NVIDIA Tesla K40c GPU

with 12GB memory.

5.1 Network Architecture

In this section of the paper, we present the proposed

network parameters for the depth estimation. VGG16 [41]

inspires our network. The configuration of our network

is shown in the Table 1. Our network is composed of 16

convolution layers and three fully-convolutional layers.

Like VGG16, our network also starts from 64 channels

and the increased by a product of two after each pool-

ing layer, eventually reaching 512 channels. The total

number of parameters in our CNN network is similar

to VGG16 i.e. 138M.

5.2 Preparing Synthetic Images

The Synthetic out-of-focus images with spatially vary-

ing blur kernels were generated using the corresponding

ground truth depth maps. For this purpose, we selected

two image datasets having ground truth depth maps for

as described in section 5.3. The depth variation is de-

pendent on the collection methods and type of sensors

used, e.g. Make3D [68] dataset has a depth variation

of 1-80 meters with more than two depth layers. Subse-

quently, the Gaussian blur kernel is generated from each

depth layer and applied to the corresponding sharp im-

age.

5.3 Datasets

We performed experimental validation on two datasets:

NYU-v2 [15] and Make3D [68]. For depth estimation,

we use the standard test images provided with these

datasets, while for blur removal we use randomly se-

lected subset of images from each dataset.

NYU-v2: This dataset consists of 1449 color and

depth images of indoor scenes. The dataset is split into

795 images for training and 654 images for the test. All

images are resized to 420×640, and white borders are

removed.

Make3D: This dataset consists of 534 color and

depth images of outdoor scenes. It is split into 400 im-

ages for training and 134 images for the test. All images

are resized to 460×345.

5.4 Depth Estimation

Table 2 shows the results for Make3D dataset. Our pro-

posed method outperforms for all metrics as well as

both C1 and C2 errors. In terms of root mean square

(rms) our method is leading by a margin of 1.87 (C1

error) and 5.07 (C2 error) from the second best per-

former.
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In [34], the superpixel pooling method extracts use-

ful regions from the convolutional feature maps instead

of image crops. However, their superpixel strategy does

not take into account the overlapping regions. Besides

this, the number of superpixels per image are small and

vary in size. In contrast, the patches we select are very

dense and have overlapping areas, which helps to pre-

dict pixel-wise depth across different patches more ac-

curately. We observe that the keypoint locations and

dense patches on a regular grid are more beneficial

than non-overlapping superpixel segments. The method

in [72] is trained explicitly for estimating depth from

out-of-focus images; therefore, it outperforms other al-

ternatives that use sharp images only.

The results for the NYU-v2 dataset are shown in

Table 3. Concerning rms error our method is 0.412

higher than the best performing method among the al-

ternatives with similar observations for log10 and rel.

Since the current state-of-the-art methods fail to ex-

ploit out-of-focus images (except [72]), we reproduced

their original results for the NYU-v2 dataset. In con-

trast, our method takes out-of-focus images to estimate

depths and still able to outperform all competing meth-

ods by a significant margin. Some qualitative results are

shown in Fig. 3. The proposed method has captured the

depth accurately for the near and distant objects in the

scene.

5.5 Removing Non-uniform Blur

In this section, we evaluate our blur removal method

on test images from NYU-v2 and Make3D. The pro-

posed deblurring method outperforms all competing al-

gorithms on all test images for non-uniform blur. Fig-

ure 5 shows the results generated by our and compet-

ing schemes for different images. Our algorithm deliv-

ers higher visual quality than its counterparts. Further-

more, our algorithm can restore high-frequency texture

details with a closer resemblance to the ground truth

than existing methods due to estimating blur kernels

from depth layers. In Fig. 5, the highly textured pat-

terns on walls are adeptly reproduced by our algorithm,

while these details are missing in the results of the other

methods. In this example, most of the other methods

tend to smoothen out the variation of the background

texture along with one of its principal directions. Be-

sides, some methods introduce additional artifacts and

artificial textures.

We present a sample result on the NYU-v2 dataset

here. Figure 4 shows the results generated by our and

competing methods for different images. Our algorithm

attains higher visual quality than its counterparts. It is

observed that our algorithm can restore high-frequency

texture details with a closer resemblance to the ground-

truth than existing methods due to estimating blur ker-

nels from depth layers. In Fig. 4, the highly-textured

patterns on walls are adeptly reproduced by our algo-

rithm, while these details are not clearly visible in the

results of the other methods. In this example, most of

the other methods tend to smoothen out the variation

of the background texture along with one of its prin-

cipal directions. Furthermore, some methods introduce

additional artifacts and artificial textures.

In Table 4, we report the blur removal accuracy

of our algorithm, measured by PSNR across all the

test images, with the highest PSNR in each compar-

ison is highlighted in bold. The average improvement

(in PSNR) by our non-uniform deblurring algorithm

over the state-of-the-art methods for NYU-v2 is at least

0.72 dB, and for Make3D is at least 0.36 dB on test

images as shown in Table 4. This significant improve-

ment demonstrates the advantage of incorporating a

deep neural network-based depth map for kernel esti-

mation in blur removal. The numerical results of our

deblurring approach are faithful to the visual observa-

tion presented earlier in Figures 4 and 5.

5.6 Real Out-of-focus Images

In this experiment, we evaluate the proposed method

on real-world blurred images. Comparisons with state-

of-the-art methods [34,68,71] are shown in figure 6. In

the bird example, the objects close to the camera are

in focus while the background is out-of-focus, which is

reflected in our results, while other baseline methods

fail to capture the relationship between depth and blur

and hence, do not perform well in this scenario.

In our last experiment, we present the visual results

on the real-world out-of-focus face image. Comparison

with state-of-the-art methods are shown in figure 7.

In the face example, there are approximately two lay-

ers of blur corresponding to different levels, as shown

in figure 7. Our method put the face and background

in different depth levels by exploiting the blur while

[34] generates sharp boundaries for the face but puts a

different level of depth for the same face layer. Thus,

making our method more useful in a practical situa-

tion in the presence of non-uniform blur. Although our

approach for the depth estimation outperformed; how-

ever, we acknowledge that our proposed algorithm does

not estimate the depth on real images as accurately as

on the synthetic images.
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Original Defocused Groundtruth DFD [72] DT [71] DCNF [34] Ours

Fig. 3 Qualitative comparison of depth estimation on [68] dataset. Our method predicted the depth levels more accurately
as compared to the competitive methods. Red color represents far while blue represents near.

Defocused Predicted Whyte et al. [51] Cho & Lee[9]
Image depth 28.63 dB 30.39 dB

Original Image
Xu & Jia[50] Levin et al. [10] Krishnan et al. [49] Ours

29.84 dB 29.43 dB 31.26 dB 33.97 dB

Fig. 4 Qualitative comparison of our deblurring results on NYU-v2 [68] dataset with state-of-the-art deblurring methods.
The difference can be seen in the red box and best viewed at higher magnification.



Deblur and Deep Depth from Single Defocus Image 11

Original Defocus- Predicted [51] [74] [50] [10] [49] Ours
ed Image depth 28.85 dB 28.42 dB 27.43 dB 29.66 dB 29.51 dB 30.27 dB

Fig. 5 An example from Make3D [68] dataset. Our deblurring method has recovered more details without producing ringing
artifacts. Best viewed at higher magnification.

Table 4 Quantitative comparison of our deblurring method on Make3D [68] and NYU-v2 [15] datasets with state of the art
deblurring methods.

Deblurring
Peak Signal to Noise Ratio (PSNR) (Higher is better)
[51] [74] [50] [49] [10] Ours

Make3D 19.95 20.46 20.71 20.29 20.67 21.07
NYU-v2 28.23 31.72 31.82 33.49 33.02 34.21

Real Image DFD [72] Eigen et al. [47] DCFN [34] Ours

Fig. 6 Real defocused image with unknown blur. Our method benefits from the amount of blur in the real images whereas
other methods rely on the color and shape of the object which fails to recover the depth.

6 Conclusion

We have presented a novel deep convolutional neural

framework that estimates the depth map from an out-

of-focus image. This depth map is later utilized to de-

blur the same out-of-focus image. Furthermore, the patch-

pooling strategy aims to extract feature maps at densely

selected keypoint locations that are effective and effi-

cient for depth estimation. The fundamental difference

from existing methods is the formulation of the con-

volutional neural network-based depth estimation from

defocus and incorporating the resulting depth map in

deblurring. It should be noted here that competitive

depth from defocus (DFD) methods require extra hard-

ware constraints, such as using patterns on the aperture

to predict the depth map. We have extensively vali-

dated our approach on indoor and outdoor benchmark

datasets and observed that our method outperformed

state-of-the-art depth estimation as well as the uniform

and the non-uniform deblurring methods.

One of the limitations of our work is not incor-

porating any geometric cues for the depth estimation.

This direction is worth investigating in the future. Our

CNN model may also be applicable for other image pro-

cessing tasks such as image denoising, image inpaint-

ing, and image super-resolution. Furthermore, different

computer vision algorithms can also benefit from our

model where depth is required and readily unavailable,

for example, object detection, segmentation, and clas-

sification.

Our method benefits from out-of-focus blur to es-

timate the depth map; however, it will not be able to

determine the depth in the presence of camera shake or

motion blur. Similarly, our method is limited in han-

dling outliers and noise present in the defocus image.

Our future work will investigate fixed budget depth esti-

mation from motion blur/camera-shake and joint com-

putation of the depth map and the deblurred image. We

will also employ techniques that can handle outliers and

noise during deblurring.
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